Click here for a clean data sheet.

DATA SHEET:

Offset = | 14.7 – P1 |; add the offset to all pressures if P1 was below 14.7; otherwise, subtract the offset from all pressure values.

offset = 14.70-14.2
= 0.45

 

error in Tn = LC/4 = 1/4
=0.25 = 0.3

(note correction here.)
error in P with offset =
(1 + 1.41...)*LC/4 = 
(2.41...)*)0.5/4 = 0.301..= 0.30

T1   =   23.00

P1  = 14.25

 P1 with offset = 14.70

T2   =  40.00

P2  = 15.00

P2  with offset = 15.45

 

T3  =  60.00

P3  = 16.00

P3 with 
offset = 16.45

T4   =   80.00

P4  = 17.00

P4 with 
offset = 17.45

T5   =  100.00

P5  = 18.00

P5 with offset=18.45

 

mbest    =  (18.35 - 14.65)/(100.0 - 20.0)=  0.04625    psi/ oC (see attached graphs); this computation may be discussed further  in the future. You will receive  an email alert indicating if  the above pressure's 1/100 place precision is called into question. You might ask, "The graphing precision appears to be better than the precision inherent in the measuring process, which only recognizes 1/10 precision above---thus,  should you really write 
(18.35 - 14.65)/(100.0 - 20.0)=  0.04625 psi/ oC? " It turns out you can keep the "extra level" of precision associated with high graphing paper resolution since it will be washed out in computations using  real data of  lower precision--see the error in T computation below.  Furthermore, if you computed your experimental absolute zero value  (near -273 0C) to a very high degree of graphing precision, you would be comparing your answer to an expected value of limited precision. The accepted value ( -273.15  0C)  would limit the significant figures you  could effectively retain in your experimental value (near -273  0C) . More on this later.

Δm  = (mmax - mmin)/2  (see attached graphs)  . Attached graphs. Use same method to compute the maximum and 
minimum slope as you did with the "best" value of m above. 

TBest =  -P1/mbest + T1. Compute this using correct significant figures. Use mbest , P1 and T1 in the data table above. 

Example computation: Using the numbers  above from this overall example problem---P1 with offset =  14.70. 
Reason for the 1/10  precision is because the above mentioned pressure  error with offset  should be written as 0.3 after rounding to one  
sig. fig. ) Also,  mbest = 0.04625  numerically.  Note: T1 = 23.00 if the above mentioned temperature error (error in Tn ) is rounded to one sig. fig.  With these provisos, here is the computation, using consistency in sig. figs.

TBest =  -P1/mbest + T1.  =  -(14.70/0.04625)     +    23.00   = -317.83   +   23.00  =  -294.8378.   See below for the computation of the percent error which you will use to compare with the error in T. 



Error in T =  delta T1 + (P1best/mbest)*(delta m/mbest    + delta P1/P1best ) = 0.3 + (14.70/0.04625)*(delta m/mbest    + delta P1/P1best  ).
Now, delta m can be obtained by taking the difference between the maximum and minimum slopes, then dividing by 2. Looking at the sample graphs handed out in classes, we get:
mmax = (18.70 - 14.275)/(100.0 - 20.0) = 0.0553125.

mmin   =  (18.075 - 14.95)/(100.0 - 20.0) = 0.0390625.

delta m = Δm  = (mmax - mmin)/2   = (0.0553125 - 0.0390625)/2 = 0.01625/2  =  0.008125. 

Thus: Error in T = 0.3 + (14.70/0.04625)*(0.008125/0 .04625   + 0.3/14.70)  = 
0.3 + (317.8378)*( 0.175675 + 0.020408) = 0.3   +  62.3215 = 62.6225 = 63 degrees Celsius

Percent error  = | Tbest - (-273) |*100%/273   =  | (-294.8378 + 273.000....)*100%/273  | 

(21.8378)*100 %/273.000... = 7.999 %  = 8.0 %.

Does the the accepted value (-273 oC) fall within the range  of final T values given by 
TBest + (error in T ) and TBest - (error in T )?

Check: | Tbest - (-273) |< error in T ?
|-294.8378 + 273.00000..| < 63 ?
21.8378 < 63?
Yes !
------------------------------------------------------------------------------------------------------------------------------------------- 

 Show work  here for above computations